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Abstract

The boundary value problem of heat conduction in a three dimensional,
laminated plate is approximated by a hierarchy of two dimensional models.
Computable a-posteriori indicators and estimators of the modelling error in
various norms are derived and thelir local spectral and asymptotic exactness is

proved. Sharp estimates for their effectivity indices are also obtained.
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INTRODUCTION

The modelling of the elastic behavior of thin objects has a long history.
The main idea is to replace the particular three dimensional problem by a two
or one dimensional one, which is easier to solve. Such approaches were
already proposed in the first half of the nineteenth century by S. Germain [1]
and G. Kirchhoff [2]. Since then many approaches were proposed. For some
surveys we refer for example to [3] and [4]. The derivation of these models
is based on physical considerations, a mathematical analysis of various
degrees of rigor or on the asymptotic analysis of the three dimensional
problem as the thickness of the structure tends to zero. We refer to [5] and
references there for this approach. In general all the methodologies can be
understood as the application of a dimensional reduction approach.

This approach leads to an approximate solution of the original higher
dimensional problem. Hence an error estimate is needed. There are presently
various a priori error estimates (see e.g. [6], [7]) or estimates of
asymptotic character (see e.g. [5]) available.

Nevertheless in today’s computational environments we need

a) an accurate and computable a posteriori estimate of the difference
(error) between the exact solution of the original three dimensional problem
and the dimensionally reduced one, the modelling error, and

b) a procedure which leads to the construction of a hierarchy of
dimensionally reduced models which allow to solve the original three
dimensional problem with a prescribed given tolerance or accuracy and this
procedure has to be adaptive (we remark that in contrast to the classical
approaches, the adaptive approach leads to models which are not uniform
through the entire domain).

As in today’s adaptive finite element approaches, the fundamental part of




the adaptive procedure are a posteriorl error estimates based on local indi-
cators which should be of high quality. By this we mean that the estimator
and the indicator have to be robust, i.e. thelr effectivity index should be
reasonably well bounded from below and above for a large class of solutions
and should be asymptotically exact for more restrictive classes of solutions.

The present paper addresses these questicns for the heat conduction
problem on a thin domain when the material is homogeneous or laminated. It
gives a computable a-posteriori estimate for the modelling error measured in
the (weighted) energy and Lz-norm. The indicators are local and heunce very
well sulted for adaptive approaches. Upper and lower bounds of their
effectivity indices are also obtained. The adaptive procedures based on this
approach will be discussed elsewhere (see e.g. [8]). Let us now outline the
contents of this paper.

In Section 1 we introduce the formulation of the problem and the main
notations. In Section 2 we introduce the hierarchic models and some of their
basic properties. Sectlon 3 addresses some abstract functional analytical
results which will be employed later. Section 4 introduces the a-posteriori
estimator and proves 1ts baslic properties, especially the upper and lower
bound for its effectivity index. Section 5 analyses the asymptotic exactness
of the estimator as the thickness of the plate d —50 and Section 6 analyses
the spectral asymptotic exactness when the degree of the model increases.
Sections 4, 5 and 6 address the estimator for the modelling error measured in
a weighted energy norm where the weight is exponential. Section 7 addresses
the error estimate for the L2 measure of the modelling error. Section 8
generalizes the estimator to laminated materials and the final Section 9
presents a simple numerical example to 1llustrate the sharpness of our

estimates.




1. Notatio d ob rmulation.

By wc R

v satisfying the cone condition. With a positive thickness parameter d and

we denote a bounded domain with a plecewise smooth boundary

w we associate the three dimensional domain

Q=wx (-d2, d/2)
with lateral boundary
r=gyx (-d72, d2)
and the faces
R, = {(x;,%,,x;) | (x,%,) € v, x; = £d/2}.
In Q2 we consider a heat conduction problem with prescribed heat fluxes ft

on the faces, i.e.

lu=20 in Q,
(1.1) u=0 on T,
+
Dnu = f on Rt’

vhere the operator L 1is (in the sense of distributions) given by

(1.2) -Lu = 833 Ea[2:3] g:3 +b [322] v, ﬁC(x)V*u].

where V = [—2—
X ax1

T
, 5%;] , X = (xl.xz); a(+), b(+) € L°(-1,1) are even
functions independent of d and satisfy
(1.3) 0<Asa(z), 0<Bsb(z).

The matrix-function C(x) 1is symmetric and uniformly positive definite, i.e.

there exist constants 0 < C ST < @ so that
(1.4) ciel? s £'coeg s T1g1?

for all € € R2 , X€w; C(x) has C ® coefficients and the boundary




operator Dnu is the (distributional) exterior conormal derivative on Ri'

To cast (1.1) into the weak form we introduce the Sobolev space
(1.5) H:= {u e Hl(Q)|trace u = 0 on r}

and define the bilinear form B(+,*) : HxH—SR and the functional F(+) :

H—R by

*3)8u av X3 T
(1.8) B(u.v) = [ {aF—d—]a—x; 5—)(; + b T] (qu) C(x)vxv dxldxzdxs
2
and

+ d - d
(1.7) F(v) -J' {f (xl.xz) v (xl,xz.i) +f (xl,xz) v (xl,xz.-i)}dxidxz.

(]

respectively.

Then the weak form of (1.1) reads: Find u € H such that
(1.8) B(u,v) = F(v) Vv € H.

Under the assumptions (1.3), (1.4) there exists a unique weak solution
of (1.8) provided that

(1.9) £*, £ e L2(w)

(this assumption could be weakened, but is sufficient for our purpose).

2. Hierarchical Modelling.

We will approximate the boundary value problem (1.5)-(1.8) by a sequence
of two dimensional problems on w, the hierarchy of plate models, which we
now define.

Denote by
(2.1) P=luo, S0, 151sn

a collection of n domains with plecewise smooth boundaries 8«»1 such that




n
nw,=¢ if 1#J and w= U Z& (# could be, for example, a

()
1 1=1

triangulation of w). For a vector q of nonnegative integers

(2.2) q= (ql,....qn} » 4y 20

and a dense sequence

® 1
(2.3) {yj(z)} c H(-1,1)
J=0

of linearly independent functions we define

qi
(2.4) S(?,q) := {u € Hlulw, = ZUSi)(xl.xz) wJF-:—a], w, € ?}.
J=0

Then S(P,q) c H and the (?,q)-plate model is the boundary value problenm:

Find u(?,q) € S(?,q) such that
(2.5) B(u(?,q),v) = F(v) Vv € S(?,q),

i.e. u(?,q) 1is the (energy) projection of the weak solution u onto
S(?,q). Hence (2.5) constitutes an elliptic boundary value problem on
for the coefficient functions Usi)(xl.xz) in (2.4).

The selection of the functions *J in (2.3) completely determines the

(?,q)-model and has been investigated in (8], from where we quote the

following results. Define wzd(z) = ¢2J(-z). J=0,1,... recursively
1
(2.8) I a(z)tﬁ(z)v’(z)dz =0,
-1
1 1
(2.7) I a(z)&éJ(z)v’(z)dz + I b(z)&zJ_a(z)v(z)dz = GJ(V)
-1 -1

for all v e Hl(-l.l) » J € N, where




S (v) =

{%(1) sv(=1) 1f y=1
J

() else

and *2J+1(Z) = "2J+1(‘2)- J=0,1,2,... by

1 1
(2.8) I a(z)$‘2J+1(z)v'(z)dz + I b(z)&zJ_l(z)v(z)dz =3
1 -1

J(v)

for all v e Hl(-l.l). J € N, vhere

3 (v) = {%(1) - v(-1) iIf o g=1
J o else
and
(2.9) ¥_, = 0.
Remark 2.1. It is not hard to see that (2.6)-(2.9) determines the sequence

uniquely (the nonuniqueness in the solutions of (2.7), (2.8) is taken care of
by requiring the compatibility condition in the subsequent step). Moreover,

it was shown in [9] that

© 1
(2.10) (WJ(z)}Jao is dense in H (-1,1). o
Remark 2.2. If a(z) and b(z) are constant, *J(Z) is a polynomial.

Table 1 lists the first four wJ.

J gg(z)

0 1

1 z

2 (322 - 11/8

3 (2° - 32)/8

4| (152? - 302% + 7)/380

Table 1. The first UJ(Z) for a=b=1 05 J<4.




If a(z), L(z) are plecewise constant, wJ(z) is a piecewise polynomial.
This .. the situation for sandwich materlals.

With the choice (2.6)-(2.9) of ﬁJ(z). the modelling error
(2.11) e(?.q) :=u - u(?,q)

ig, for P = {w} and q = N, of optimal asymptotic order as d—0,
provided the data f*. £ are sufficiently regular in o and satisfy
certain compatibility conditions on the edges 8I' = ¥ x {td} which ensure
the absence of boundary layers (see [10], for example). We emphasize at this
point that due to (2.10) the error e(?,q) will also tend to zero for fixed
d >0, if lin(qi) — o 1in contrast to the error in models obtained by
asymptotic analysis.

In the following sectlons we will derive computable a posteriori error

estimators for the modelling error measured in the energy norm
172
(2.12) Ie(?.q)ls(m = (B(e,e))

in terms of the residual data on the faces Rt' The following property of

e(?,q) will prove to be important.

Theorem 2.1. For every (?,q) we have
ds2 x3
(2.13) J bF-d—]c.e(xl.xz.x:’)dx3 =0 a.e, (xl.xz) € .

Proof. It follows from (2.6) that &0(2) = const. Due to (2.5) we have
B(e(?,9), v) =0 Vv € S(?,q)

and, since X(x)wo[f;a—] € S(?,q) for all (?,q), we find with Fubini's

theoren




d/2
(2.14) 0= I VxX(xl.x2)°C(x1,x2) Vx J b[z—:a—]e(xl.xz.xa)dx3 dxldx2
w -d/2

for all X e f'(w) = {u e Hl(u)ltrace u on 7 = 0}.

Let
ds2

¥ix,,x,) = I b[z—;‘g—]e(xl,xz,xa)dxa :

-d/2
Since e € H, y € ﬁl(ﬂ). Using X = ¢ in (2.14) we conclude that y =0
which was to be proven. a
We shall derive in Section 4 computable guaranteed upper estimates for
the modelling error (2.12) which are asymptotically exact. Moreover, our
estimators also give information about the local contributions from Wy to
“enz(n). As a tool we shall use certain exponentially weighted spaces, which

we analyze next.

Remark 2.3. Here and in what follows we assume that the elliptic system (2.5)

of differential equations for the unknown coefficient functions Usl)

solved exactly. However, usually only an approximate solution can be

is

obtained. Our results remain nevertheless valid, if the approximate solution
has a sufficliently high accuracy. In computational practice one usually works

with a finite element approximation of USI).

estimation of modelling error can be used to determine the desirable accuracy

of the finite element approximations of U(i). o

J

In this case the a posteriori




3. Some abstract results.
Let Hl' Hé be two reflexive Banach spaces furnished with the norms

I-II1 and I-nz, respectively. Further, let B(u,v) be a bilinear form
defined on H1 x Hz. We will call the bilinear form (C,7)-regular if there

exist constants 0 < C, ¥ < ® s0 that
(3.1) IB(u,v)| Citully tvi,,

(3.2) inf sup |B(u,v)| 2 7,
Iui1=1 ﬂvu2=1

(3.3) forany v+0, ve Hz, sup [B(u,v)| > 0.
flul =1

Bilinear forms satisfying (3.1) - (3.3) have the following properties.
a) Let f € (Hz)’ (i.e. f 1is a bounded, linear functional on Hz),

then there exlists exactly one u € H, such that

1

B(u,v) = f(v), ¥Yv € H2.

b) If
(3.4) sup |B(u,v)| S A,
IVI2=1
then
A
'\1“1 < ; .

Let us consider now some special cases which will be important later.

Let 0 < p(x;,x,) € W' ®(4) denote a (strictly positive) weight
function in w. We define
H9 = {e € H| e satisfies (2.13)}

and furnish Hv with the weighted energy norm defined by

(3.8) leli - L"z(xl'x2) {a[;xg] [g’%a- 2 *h [2_:2] vxercvxe}dxldxzd"a :

The following Lemma will be used repeatedly.




Lemma 3.1. Assume that u € H;. Then

(3.7) J 92de§]u2dx1dx2dx3 < A2d? J ¢2a[fd§] ["(.,-’%3-]2<1x1dx2dx3
ox(-d/2,d/2) ox(-d/2,d/2)

for all open subsets o S w. Here A 1s given by

1
J' alz) (¢’ )24z
-1

1
= inf

A 1

verl(-1,1) I b(z)yZdz
1

and the infimum is taken over all
1

v e H(-1,1) n {WIJ b(z)¥(z)dz = 0}.
-1

Proof. Assume that u € C(@) n H’. Then we have for all x € w the bound
d/2 xg d/2 xa 2
2 2.2 8u
-d/2 -d/2

by the definition of A and a scaling argument. Multiplying both sides of

2

(3.8) by ¢ and integrating over o we get (3.7) for u and a density

argument completes the proof. ]
Remark 3.1. For a=b=1 we find A-%. If ¢ 1s symmetric In 2z

then A = 1.
"

Theorem 3.1. Let 0 < p(x,,x,) € w!'®(w) and assume that

2
Q := max g:;/pzl - < o,
i=},2 1 L (w)

Define H1 = H?' l-l2 = HI/'. Then the bilinear form (1.6) is (1,7) regular

on H1x112 with

10




~—1/2
(3.9) T27, :=[1-dAQ\/E/2] [1+dv/2€ m1+d&l\q]] .

Proof:

1) IB(u,v)| < Iul’ 'vll/p follows immediately from Schwarz’' inequality.

2) Let us show (3.2). For u € H, define v = pzu. Then Vv € HI/¢

and

ov__ 2 8u
8x3 e axa'

Hence, denoting the volume element by dx, we find

2
va = 9zvxu + uvx(c» ),

(3.10) B(u,u) = Iuli + I {b[z—::’-]uvx(vz)rc(x)vxu dx,
Q

and we estimate for every € > O

l I {bFaxg]qu(vz)TC(x)qu} dxl
Q

£Q \/EZ {% Inb [-2-;3—] uzpzdx + e In ¢2b [agT]vquC(x)qu dx}

Utilizing Lemma 3.1 with ¢ = w, we arrive at
*3 2.T
J {b[zT]qu(Q e u} ax
Q

s o/t A_jeij,za[;"a][gug]%“
Q

cl pzb r‘)—d—]vquC(x)vxu dx} .
Q

Selecting € = Ad ylelds

B(u,v) 2 (1 - dAQ ¥ &/2) Iuli.

11




Further,

2

|v|?/¢ = Iu + J ' b[zxs]{ZQ uv (v ) c(x)v u+ uv (1’ ) C(x)V (¢ )} dx

Slul +dAQF Nul +2dchpzaFd§][g_Lx32
Q

< [1 + dE AQ[I + dvé‘(-:— AQ]] Iulf,

from where get (3.9). o

Remark 3.2. We observe that

02 /|

i==1 2 L™(w)

and, from (3.9), we can select ¢ in particular so that « := QAV C/2d < 1

and get
(3.11) 72 (1 -a) (1+2a(1+20)) "2
4. ori estimatio delll e

In this section we assume that the (?,q)-model (2.5) has uniform order
q and that its exact solution u(?,q) 1is known. We will be interested in
computable estimators for (2.12), the modelling error in energy norm. To
avoid obscuring the main ideas behind technicalities, we assume throughout

this section

(4.1) a,(z)-b(z)--l.C(x)--[(lJ ?].

f.e. L in (1.1) is the Laplace operator and Dn = §/6n 1is the outside

normal derivative. All results apply with minor modifications in the proofs

12




which we will present in Section 8 also to (1.1). It is convenient to write
us= u1 + u2 where
(4.2) ul(xl.xz.xs) = '“1("1”‘2’ - x3). "2"‘1"‘2"‘3) = uz(xl.xz. - xa).

The u, satisfy : u

L € Hi such that

i
(4.3) B(ui.v) = Fi(v) Vv € Hi’ 1=1,2
where

F1(v) = fl(xi,xz)(v(xl.xz.d/z) - "("1"‘2' -d/2)) dxldx2 ,
W

Fz(v) = fz(xi.xz)(v(xl.xz.d/z) + v(xI.xz. ~-ds/2)) dxldx2 .
W

1 + - 1 + -
Hi = {ue H | u is antisymmetric (symmetric) in Xy for i = 1(1=2)}.
Obviously, the spaces Hl and H2 are orthogonal in energy, 1.e.

(4.4) B(u,v) =0 Vue Hl' Vv € H2 .

and u(?,q) = ul(?.q) + uz(?,q). each of which can be obtained by energy

projection of u, onto
(4.5) Si(?.q) := S(P,q) n Hi’ i=1,2
Further, from (4.4) we get also

(4.6) te®. )2 g = 1o, (P12 g, + e, (7. g, -

vhere °i(?'q) =4 - ul(?.q). 1 =1,2.

1

Since S(?,q) in (2.4) depends only on spaan(z))q

J=0 " l!q(-l,l) (see

13




Remark 2.2), we will assume below for convenience that

(4.7) $J(Z) = LJ(z) R
where LJ denotes the jth Legendre polynomial on (-1,1).
All our a-posteriori estimators & for (4.6) are of the form
1
2 2
(4.8) S(ul(?.q)) = [ '"1(x1'x2)| dxldx2 , 1 =1,2,
w

Here ni(x1,x2) is called Indicator function.
Let fof be any normon H and € in (4.8) an a-posteriori error
estimator for [e(?,q)i. Then we define the effectivity index €

corresponding to & and Jof by

s .- Sz

We say that & 1s a guaranteed upper estimator, if © 2 1 for all u. The
estimator & 1is (xl.nz)-proper with respect to a class T of data, if
0 < xl £8s ‘2 < @ vl € T.
Further, & 1is asymptotically exact on T if
(4.10)’ 86— 51 as d —— 0 VfeT,
and & 1is spectrally exact on T if

(4.10)”" 86— 1 as q— ® vVf € T.
Finally, &€ 1is locally asymptotically (resp. spectrally) exact on T, if
(4.10)’ (resp. (4.10)”) hold with the norm '°'9 defined in (3.6) where the
weight function v(xl.xz) is given by
[ 2 ° °
"("1”‘2) := exp d—"{'xl le + Ixz-le}. 0<ps1,0sac< 1/(1\5)

and (x;.x;) € w is arbitrary.

14




We begin the analysis of the estimator & for the case ? = {w} and the
ehergy norm and consider the Lz-norn later in Section 7. Whenever the order
of the model is uniform throughout w, we shall omit the index P. Due to
(4.6) we can derive the indicator functions "1' 1 = 1,2, separately. We
start by observing that, due to Theorem 2.1, the errors ei(q) € Hp. i=1,2

defined in (4.6) satisfy

(4.12) B(el(q).v) = RI(V) VW eH
and

(4.13) B(el,v) =0 Vv € Sl(q)
vhere

Ri(V) = ri(xl,xz) (v(xl,xz,dlz) 4 v(xl.xz,-d/z))dxldx2
[A)

.

+ v(xl,xz.xs) Aul(q)dxidxzdxs, 1i=1,2
Q

and -,+ correspond to 1 = 1,2, respectively. Here

8ui(q)
(4.14) ri(xl,xz) = fi(xl.xz) i e (xl,xz,d/Z). 1 =1,2.

Remark 4.1. For f1 € Hs(w). s 2 0, we have
(4. 15) r, e goin(s, 1+e)

where ¢ > 0 is determined by the maximal regularity of the solution to the
Dirichlet problem for Ax in v (e.g. if ®w 1is a slit domain, 0 < € < 1/2).
The unknown coefficient functions in (2.4) satisfy the elliptic system

2
d

-g—AAxU+ BU=c't  -¢cf in o

U=20 on dw.

The matrices A and B are independent of d and given by

15




1 1

Ay - I oy, B - I ¥iviez
1 -1

ct = {w(£1),..., wq(:mT a

We calculate next a simplified expression for Ri(v) which we will use

repeatedly below.

Lemma 4.1. lLet 1 =1 q=2m+l1 or 1 =2, q=2m then

RI(V) 8[ ri(xl,xz) v(xl.xz.d/Z) ] v(xl,xz,—d/Z)

(4.18) w
a/2

7 i s s

Proof: let i =1, q = 2m+1. Then

2n+l x3
(4.17) bu (@) = Z Ay yty%p) Ly [ZT]
J=0
for some Ai € H-I(u). To determine A, ,, we use
J 1)
Rl(v) =0 Vv € Sl(q) v Hz

1
We select v = V(xl,xz) 1‘2k ITS] € l-l2 with arbitrary V e fi'(w) and get
AIJ =0 foreven J. For J=2k+1, 0 Sk S m we find
1
d 2
0= J V(xl.xz) 2r1 + A1.2k#1 EI [L2k+1(2)] dz} dxldxz.
W -1

Since we get V € ﬁl(u) is arbitrary, we get

2
A1.2k+1' -3 (2(2k+1)+1) ry

18




(note that due to Remark 4.1, A e 12).

1,2k+1

Hence

n

2
Aul(q) =-3 rl(xl.xz) Z (4k+3) LZkﬂr*)T]
k=0
d X3
=) &g ["2-+2Fd_]]'

For 1 =2 and q = 2m, one proceeds analogously. a

We derive next the estimator €. We start with the observation that from
Theorems 2.1, 3.1 we have the bound

IB(ul-ui(q).v)l

(4.18) 7 |u1 - ui(q)|¢ < sup , 1 =12

ivi
Otlvll/’ 1/¢
where 7, is as in (3.9). With (4.12) thus
. 5 (R, (v))?
Tole (@1, £  sup —_—
000 T owpvr, . vi®
/¢ 1/¢

(R, (v))?

s sup 3
O=|vi -2 [0v
1/¢ ) [___] (x . . )dx
J; %) *1'%2’3

2
S sup [ I or, & [v] dx ]
ootul Jh 192
1/¢

where
[Qllv]](xl,xz) -
v(xl.xz.d/Z) ¥ v(xl,xz.-dIZ) - Jf:izv(xl.xz.xa) E%; Pﬁq+l[E;§]]dxb

(1, B =)

Hence we obtain, using Jensen’'s inequality, that

(4.19)

17




2 2 2 2
(4.20) 7O|°1(q"9 < I ¢y 0::;;" (Oilv]) dx dx2
W

where the supremum is taken over

(4.21) M := L%(w,H)(=d/2,d/2)) n {v” vix; =0 ae  (x,x) € w}
-ds2

(see [11] for the definition of anisotropic Sobolev spaces).
Since 01 is strictly concave and upper semicontinuous on M, there

L
exists a (unique) maximizing element v, € M which satisfies the

Euler-Lagrange equat.ions

S sbf) - L2
8x3 dx:, Lye1 53
ﬁ I 1% if 1=1,
%3 lias2 11 If 1 =2

[ ]
Hence we find that v1

2 2
.oL _"3-1,_:_3
»q20,

is independent of (xl.xz) and given by

d q+2{ d q
(4.22) vi = i zq*a
and
(4.23) [’ [V ]] m =:d Ciq .

Referring to (4.20), we have proved

Theorem 4.1. Assume that f, in (4.3) is square integrable over . Then
the error Iei(q)ls(m for the hierarchical model of uniform order q (l.e.
P={w) andodd q21 for every i1 =1, q even fo~ 1 = 2) can be
estimated by

(4.24) Ie (q)l s q*3[ P T, dx1dx2
w

where ¢ 1is as in Theorem 3.1 and

18




aui(q)
ry (x xz) = f (x1 xz) xa (x1 » %o x3). 1=1,2.

Based on (4.24) we define the indicator functions

d
(4.25) Mg (xi.xz) = /5375 y(xl.xz) ri(xl.xz). 1i=1,2

and the estimates G(ui(q)) defined in (4.8) are, according to (4.24),
guaranteed upper estimates for Iei(q)IE(Q)' since ¢ = 1 1implies 7 = 1 in
(3.9]).

Remark 4.2. We emphasize that "iq is very easy to compute, especlally for

low order models. We find in particular for 1 =2, q =0 that

2 d 2

Selecting ¢ =1 implies Q = 0 in Theorem 3.1, whence we obtain = 1 in

=f_ = (£ + £7)/2 the estimate

(3.9). Thus (4.24) yields with ry 2

(4.26) le (O)IE(Q) If +f an( ). o
@

In the subsequent sections we will demonstrate that the estimators S(ui(q))

based on (4.25) are asymptotically and spectrally exact.

18




5. o rror_est r.
Before demonstrating the asymptotic exactness of &, we introduce some
notation. Throughout, ¢ will denote the exponential weight function (4.11).

Further
2 22
(5.1) lrlk” .=I Ivzrl ® dxldx2 .
W
Finally, we introduce the class of data

(5.2) /v

1,¢ S B < w}.

:= {f]either ri(f) =0 or Iril

Tg ifo,e

The main result on asymptotic exactness is

Theorem S5.1. Let 81, 1 =1,2 denote the effectivity indices (4.9) with
respect to the weighted energy norm (3.6). Assume further that % = {w}, i.e.

the model order is uniform. Then for 1 = 1,2 holds:

° 2 2 1
1. If fieL(u) we have with Als-'-.l\2 ;.that

-1/72
(5.3) 8, 2 Kyy i® [1-A1 - Q][l + dVi“h10(1 +d VE“Alo)] , 1 =1,2.
vZ2o

20 1If fy €Ty then

' 3 2 172
(5.4) 8, Sk, i= [1 +id2Dq (8% + @ )] 1=1,2

where Dq is given by

(5.5) D = +
9 (2q+3)° - &

Moreover, iIf ¢ =2 1, the factor 3/2 In « can be replaced by 1/2 and

12
Q=0.




Proof: 1. The bound (5.3) follows immediately from Theorems 4.1 and 3.1, if
we note that l\1 = 2/ and .k,z = 1/ in Lemma 3.1 with a=b =1 since
the infimum there is taken only over odd, resp. even ¥ € Hl(-l.l).

2] To show (5.4), we select in (4.12)
-2 hd 2
v=vp = vi(xa) ri(xl.xz)w

L ]
with v, as in (4.22) and get with (4.23) that

[

2 2
(5.6) RI(V) = qu I rye dxldx2 = B(ei(q).v) < leilp IVHI/, .
W

Since

2 2. 2,5 =2 - 2
|vxv| <9 {39 |vxv| + 6lv| Iwal }

we find
iz, = [ ¢ 2o+ )}
1/¢ \4 X ax3 1""2""3
Q

i — 42
2,0 =2 -2 2 2 (v
< [o?19,51% + 61917 19,917 + a—"a] } axyax;ax
Q

»
] - v, .42
. 2(,.2 2 2, 2 1% 2 2
vy ! [39 190,12 + 619,012 Ir,| ] . [d, ] ir, | }dxldxzdxa.

g Y]
Since
d/2 »
J Fvi]zdxa dc
e— = q
-d/2 dx3
and
d/72
.2 1 3
I (vi) dxa'iquDq,
-d/2

where D_ 1s as in (5.5), we get with wxm2 s Q%p%/2
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2 2
(5.7) 'V'1/¢ < dcq ir ~>- cqnq |r1|1’p +Q lrilo.w .

l2 . 3d3 2 2
170, ¢

For every € > 0 we have from (5.6)
2 2 -1 2
2d Cq'rilo,w fe He1H¢ + ¢ lvll/v .

If we select €. > 0 so that

0

-1 2 2
(5.8) € llvlll/w <d Cq ir = (e(uil)

2
1'o.¢
we arrive at the desired (lower) bound

(8u, (@)% s e fe (@I , 1=1,2
1 0 i o ' rer

We estimate ¢,. Using (5.7) and (5.8) glves

0
2 2
fivil ir i
€. = A__ <1 + g. dZD Q2 + _l.ﬂ .
0" a2 2 -
q 170,¢ 10,9
Using that f, € T gives (5.4). o
Bemark 5.1, For f, €T, and B = Bd P, p <1 and the weight function

¢ defined in (4.11) with p < 1 we have from (5.3) and (5.4) that
@ ——>1 for d ——0 .

Thus 81 based on (4.25) is a locally and asymptotically exact estimator for

the modelling error. (a]

The local asymptotic exactness not only ensures that the indicator
functions "iq in (4.25) give a good estimate of the global modelling error

in energy norm, but also for subdomains @ of w that




1
2
~ d 2
Slq(P:w) 1= Vé;;;“ [ J Pi(xI.xz) dx1dx2

L~ P
dist(xi.x2.0)<d

is an asymptotically exact measure for the local contribution to the
modelling error at .

It further guarantees that a local increase of the model order in P
will reduce the error in ® while leaving the error elsewhere in W\w
unchanged -- a feature typically not found for elliptic equations and a
consequence of the fact that 2 is a thin domain. These observations are the

basis for the adaptive selection of the model orders on subdomains of o [8].

6. Spectral exactness of the error estimator.

Our purpose in the present sectlion is to show the spectral exactness of

the errcr estimator &, i.e. that « in Theorem 5.1 tend to one as

11’ *12
q—o at fixed d > 0. VWhile this is not hard to establish for Ko in
(5.4), the corresponding proof for ki1 requires a more careful analysis of
the constant A in Lemma 3.1.

We denote by vk(xl.xz) the eigenfunctions (orthonormalized in Lz(u))

of the eigenvalue problem
(6.1) -Ap, = A9, in 0, g =0 on du,
k=1,2,3... and the eigenvalues are enumerated with respect to increasing

magnitude and counting multiplicity. We collect some of their properties that

will be needed later.

[enmp 6. 1. Assume that w c Rn. n=1,2 and that 8w 1is smooth if n = 2,

Then 1. Al > 0 1is a simple eigenvalue and the corresponding eigenfunction

23




01(x1,x2) >0 in w.

2’ For all k € N, and all (x,,%,) € o,
1

172
® if wcR
k
(6.2) Iﬁlco(;) < Clw)e, . 6, {liﬁ T

Proof. Assertion 1° is well known. Let us prove 2°. Inthe case n=1
the assertion follows from the expliclitly known eigenfunctions. We consider

therefore n =2 and claim that

891
-bT1EC1(0)>O.
To prove it, we note that 71 >0 in v and hence the function u = -91
satisfles

Au = A 20 in w,u<0 in w, u=0 on dw.

1*1
Now we can apply the maximum principle [12, Theorem 2.7] and find that
g—:: (xo) >0 for all X, € 8w from where the claim follows.

Now, since 7 1s smooth, there exists co(u) > 0 such that w, =

{x € wjdist(x,7) > €} 1is smooth, too, for 0 < ¢ < €, Hence we can

estimate, possibly after reducing €y

1
vl(x) 2 5 Cl(u)e on w,

and get
I? s € Czle l’k' ®
1 %0 ) 01 L (uc)
€
2
Le. oy (0] 2 K'120)
®
k
(6.3) > 4 Ca(u) vﬂ kal 2 - Ca V'A_.l .
1" o L™ (w)
L (uc)
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In LA B\ue we introduce the boundary-fitted coordinates (p,s). Then we
have from Taylor's formula that
o9y 2 %y
o (p.8)1  logs (0.8) + 0(% I — (x)|
%, (55T = s, < C4{e) =P 1739,
IP——— (0,s) + 0(p )| 3 (x)
C (u) avk C4 Gvk
< é—- CS(U) 3
1 n 17248
L) H (7)
< Cs(u) I’knﬂz*za(u)
where C6 is independent of k, but depends on & > 0. Hence
?,
(6.4) H—E < C () IA“‘ kl = c(w) A *°
“ile ) L%(w)
0 ¢
Combining (6.3) and (6.4) completes the proof. o
With the eigenfunctions
- 2y 2m-1
(6.5) Yin [—] s“‘[“u a ] S T e
and
2y| » 2y =
(6.6) ‘2- {d ] °°sﬁ“2- d ] v By T WX
m=1,23,... , the eigenfunctions for -A on 0 with homogeneous boundary

conditions on I' and Rt which satisfy (2.13) are given by

*3
(6.7) LR MR ST Fa—] :

with the corresponding eigenvalues

-2 2

Ayw = A L

K 1i=1,2 k, meN

(6.8) ik

25




The sequence of elgenfunctions @ is dense in the space H defined in

ikm
(3.5). Therefore we have in particular for the modelling errors e, the

expansion

(6.9) e, = Z Eikn ’u:n , 1 =1,2
k, meN

where the coefficlents can be determined from Lemma 4.1.

Lemma 6.2.
-1

[ Ak* “1- Bil pik
with Pix and B?. as in (6.10) and (6.11) below, respectively.
Proof. We recall (4.12)
B(ei.v) = RI(V) weH {=1,2,

where, with (4.16) and integration by parts,

ds2 X

Ry (V) =I £y 0y %) J 7 et ) exgomyeng -
-d/2

(]

Since
B[’nm' ‘Jln] [2 A * ”1-]81,)‘1:15

we obtain with

(6.10) Pix = I ri(xl.xz) ¢k(xl.x2) dxldx2
W

and

1
(6.11) Bla -I ta(@) Lo,y (2) @z

-1
the assertion. o
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Our purpose is to estimate the dependence of A 1in Lemma 3.1 on the

model order q since

Id/Z [Hei
) 5
(6.12) inf inf —32°3 2 1

(x1,x2)ew e Id/z (e)? ax, (A (@)

-dr2 !

where the infimum is taken over all e of the form (6.9). We compute

2
(e,) =
I-UZ 1 9
2
3 2 A, -1 22, +-1 (89)
d a *x ac M in
(6.13) [z] Z PikP1e [‘ YT _z"] [1 ‘T 2] AL
k,¢,m im "1- im
and
-dsz 9%, 3
2
2 A, -1 2, +-1 (83)
d a® *x a ™M im
(6.14) [5] 2. Pulie [‘ * 4—"2‘] [‘ Y 2] RGO
k,¢,m “1- "il ”in

To obtain a lower bound for (6.12), we estimate (6.13) from above and (6.14)

from below (pointwise). For (6.14) we have with a =1 + dzhll(lufl)

) e

-1
d 2, ,2-2
2 A 41 -1 (B )
d a< e
- Z [1 + T"z—] [1 * Z‘"‘z"] CIVURCITINL M "z'} ( )2'
k, 822 By Bim Bim

~l,p ®
d -2 2 1P1ki 1%x|
=z oyl Iyl { Z [1 ’4“2 To T Te,1
11
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2
(bS] T
2 P @ 2
k22 11 1 m ("im)
q)

(6.15) =S a2ip 1% 1912 (1 - 20 - MZ

m (uin)

where we assumed that Piq # 0 and defined

(6.16) ¥ = Clw) Z [1 +

with C(w) and ek as in (6.2).

Corsider next the upper bound for (6.13). We estimate analogously as

-1 Ipikl

k
4"11 TP

before and get

ds2

(6.17) I (ei)2 dx, < [%]3|¢1|2|p“| (1 + w2 Z (
-d/2 m "1n
1i=1,q=2n+1 or 1 =2, q=2n.
Now
1
B?m = J wim Lq+1(2) dz
-1
1
= - I n {z q“(E)d&:lz + [th+1 € |, .,

1

= ul
uin

wln Iz Lq+1(€)d€ dz
1

where we used that W;. (¢1) =0 and - ;m = uf- win' Hence (B?-)z//ﬁf-

are the Fourler coefficlents of the antiderivative of Lq+1. if.e. of
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-1 .
(2q + 3) (Lq+2(2) - Lq(z))

Therefore
2
(81) _
(6.18) Z B = K(2q+3) 2 1L 2 - Lo
= () q TLe-1,1)
= K 5 4
((29+3)" - 4)(2q+3)
and analogously
2
(83)
im 2 2
(6.19) Z = KIL_. .} =K ==
2 q+l”. 2 2q+3
. (ui.) L™(-1,1)

where K 1s a constant depending on the normalization of the *il in (6.5),

(6.6) (its numerical value is immaterial in what follows). We can now prove

Theorem 6.1.

10 If f (€ T g defined in (5.2) with B8 = Bla/)™, >0, and B

B
independent of d and q, then

KiZ_)1+ both as d—o’ y /o .,

27 If, moreover, fi is such that

a) Py 0

B) W(ri. w,d,q) S (V2 - 1)(1 - D;-c) for some € > 0, then

kK,,—1 both as d—-)O*. q— .

11

Proof: Assertion 1° follows immediately with the definition (5.4) of Ko

and the assumption on B. To show 2°, we note that « is as in (5.3),

i1

however now with A, determined from (6.12) instead of Lemma 3.1. Using

1
(6.15), (6.17) in (6.12) we find




q .2 -2
(By )" (1)
1 4 1-2¢-% =
A & 2w
y(a Z (g
n

2 -4
l) (“il)

and, from (6.18), (6.19) with ¥ = (V2 -1) - 8, 0 < 3 < V2 - 1,

3(2v2-8) (2q+3)%-4

1 4
2 5 3

(Ai(q)d)z a2 (v3-3)2

z-g—-uu/z—‘).
qu

Alq) s (14 fz“)'lnq/a

and, using & = (V3" - 1) n;"‘". we find in (5.3)

AQ) s n: = ((2q+3)% - 4)°¢ -

This completes the proof. ]

Therefore, under the assumptions made, Theorems 5.1 and 6.1 establish the

asymptotic and spectral exactness of the estimator & 1in (4.8).

7. mewmmmfm

In the present section, we derive a-posteriori estimators for Iell 2 .
L=(Q)

To this end we consider the bilinear form

(7.1) Bl(u.v) = I u Av dx
Q

L J L
on Hlxl-l2 where
d/2

[ u(xl.xa.xa) clx3 =0 a.e, (xl.xz) € u} .

H = {u e 12()
oy

1

furnished with the nora




1
b, - [[ lui? ax? = pur ,
Q L=(Q)

and where

. av
-veH(n)llAvl <®w, —=0 on R}
HZ ® Lz(ﬂ) 8n : 4

with H, defined ‘n (. ), furnished with the norm

= JAv} 2

]1/2
L™(Q)

v, = [I le2 dx
o]
H2 v
We note that locally v € H (Q) and hence 3n is well defined.
t 2
it is also readily seen that |»|2 is a norm on l-l2 .

Furthermore,

Theorem 7.1. The bilinear form B,(u,v) 1n (7.1) satisfies (3.1) and (3.2)

with C =9 = 1.

Proof. It is easy to see that (3.1) holds with C = 1. We will now estimate

L]
7 in (3.2). For given u € H,, define s to be the solution of

(7.2) As = u in Q,

(7.3) s=0 on T,
ds

(7.4) 3n (4] on R:t .

Since u € LZ(Q), s obviously exists and is uniquely determined.

(7.5) zZ =g - %rlz s(xi.xz.xa) dx,,

-d/2
Therefore

2
BI(U,V) - I ulz dx = l“llo lzlz 'ull
2

and (3.2) follows with 7 = 1.
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We turn now to the derivation of the u-posteriori estimator for |e(q)l1

= Je(q)ll 5 - We start from the characterization
L=(Q)

(7.86) Bl(ei(q).v) = RI(V)

with R1(°) as in (4.16). Using Theorem 7.1 gives
IRi(vi)l

le,ll = sup
V2@ v I“’ILzm)

*
where the supremum is taken over all O # v € H2 N H1 which satisfy (2.13)
-

with b =1. To estimate the supremum, we observe that any v € H2 can be

written in the form

(7.7 vi(x4X5.%5) = Z ‘1k-"k"‘1"‘2’*1-[sza]
k,m21
where Py and win are as in (6.5)-(6.8). Further, we find that
*3
(7.8) -Avi = bikn wk(xi.xz)wi- e
k,m21
where
bikl = aikl Aikl 1=1,2 k,meN,

with Alkl as in (6.8). We insert (7.7) in Ri(vi) in (4.12) and find for

i =2 with gq=2mn that

Rz(vz) = I rz(xl.xz){%z(xl.xz.d/Z) + vz(xl.xz,-d/Z) +
o

2n
Z Ay 24 rﬂ "2("1"‘2"‘3"‘25[2—:3‘]“"3} dx, dx,
J=0 -42

where

AzzJ"?T“J‘” .




Next, using (7.7) ylelds

¢
Ry(v,) = 2 Z‘zkt by (120 - 7, )
)

where

T

20280 ve ,

(7.9)

NIH

) ]
Z (44+1) I Lyy(2) cos (&x2) dz
J=0 -1

where q = 2m > 0. Therefore

IRyvy) 12 54 ) (py) ) &
k k
where

-1, .t
Ck = Z Doelhzgg) ((-1)7= 750)

and we estimate
2 2 -2
z (ooe) Z (1= 700 (A
L

Since from (7.7)

2 d § : 2
(7.10) fAv, ) = = (b,. )
1 LZ(Q) 2 = ikm

we find

IR, (v,) 12

o2 " ot
L 9] \'/ Av

2 722

1 3 2 e 2 -4
s 5 d IP2| 2 :E: ((-1)" - tzqz) (“2t)
L™ (w) T

With an analogous reasoning for 1 = 1, we have shown
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Theorem 7.2. For 1 =1,2

TIPSR R E sl LA
L (Q) L™ (w)
where
1 4 2 -4
Eyy = 3 Y nt -z ) gy
L
and Taqz is as in (7.9), and for 1 = 1, q = 2m+1,
n r1
1 l
tht =5 :E: (4J+3) J L2J+&(z) sin (MICZ) dz.
J=0 -1
Remark 7.1.
= = 1 -4 -
For q =0, Toor = 0 and hence E20 3 X ¢(4) = 1/180. For q > O,
Eiq must be computed numerically in general.

8. Error estimation for laminated materjals.

The analysis in the preceding sections carries over to the general
problem (1.1) with minor modifications which we will describe. To underline
the analogy, we assume that a basils *J has been selected so that its span

coincides with that obtained from (2.8)-(2.8), and further, that for

J=0,1,2,...
(8.1) ¢bJ(z) = wéJ(-z). wéJ+1(z) = - *éJ+1(_Z) ,
with
1
2
-1

the normalization satisfied by L _(z). Then we obtain, because of the way

J
span (iJ) was defined, that for { = 1,2




RI(V) .,[ ri(x1.x2) v(xl,xz.d/z) 4 v(xl.xz.—d/2)} dx1de
W
(8.3)

q ds2
+ Zau I rl(xl.xz) I b[f-axg]lﬁj Fdé]v (xl.xz,xa) dxadxldxz.
J=0 w -d/2

where "“-" correspords to 1 =1, "+" to 1 = 2. Since RI(V) =0 for all

v € S(q), we find from (8.2) that

a =-§¢J(1) (2J+1) 0<Jsgq
1=1 iIf J 1is odd,

i=2 1if J 1is even.

1

The residuals r'1 are defined for 1 = 1,2 by

éu, (?,q)

i
(8.4) rl(xl.xz) c= fi(xl.xz) - a(1) —Fn (xl.xz.d/z) .

Assuming P = {w}, we reason as in (4.18)-(4.20) and find

(8.5) 7 Iei(q)li < [ 02!‘? sup (Oi[v])2 dxldxz

veM

where

Oi[vl (xi,xz) 1=

vix,, %, d/2) t v(x1 \Xys-d/2) - J [2"3 ¢J[z"3

U e ](xlxz*a’d*a]

where the supremum is taken over

(= L (u.H (-ds/2,ds2) n

J [2"3 =0 ae. (x,x) e .,,} .

Once more the variational problems sup Ollv] admit unique maximizers \}
M
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which are independent of (xi.xz) and satisfy the Euler Lagrange equations

(in the weak sense)

& R R - S BB

(8.6)
a(1) ;Zl - * X3 = 42 1=1
< TR V- I 3 Xg=-d2 1=2.
Defining
o .2 ‘e 1=1, q20, even
(8.7) (1v1]) T iq 1=2, g21, odd

where Ciq is independent of d (and must generally be calculated

numerically), we have proved

Theorem 8.1. Under the assumptions of Theorem 4.1 we have, for { = 1,2,
2 22
(8.8) 70Ieil(q)u’ <d Ciq J Py dxldx2

(2]

where ¢ 1is as in Theorem 3.1 and r, as in (6.4).

i
The indicator functions are therefore now

(8.9) "iq(xl’xz) = vd C1q ¢(x1.x2) ri(xl,xz) .

It can also be shuwn that exact analogs cf Theorems 5.1 and 6.1 hold with
suitably modified constants Dq. We shall, however, not elaborate since the

detalls are completely analogous.

Remark 8.1. In the practically important case that a(z), b(z) are plecewise
constant functions, Clq in (8.7) can be computed numerically by maximizing
#[v] over piecewise polynomials in one dimension (of sufficiently high

degree).




We consider

(8.1) Q= (-1,1) x (-d/2, d/2)

and select - £ in (1.1) so that

u = u(x,y) = 2 cos X x| cosh |E y| .
2 2
Then, for uniform model order q = 2m

q n
ulq) = ZUJ(x)LZJ [g’—’] - ZxJ cos [g- x] Ly [f—l!]
3=0 J=0

Then the vector X = (%, «coenne , x.) is determined from

where
a = 2x sinh [;‘_1_] , e=(1,..., I)T.
and

1 1

Ay ™ I 1"21“23 dz, By = ‘L"é: Loy 9= -

Selecting the weight function ¢ = 1, we find

Ie(Q)If v = a[z cosh [:—d] - xTe_]

and the estimator

n
2.
82 = d « - 4 Z x L. .(1)
W3qed) | sl2g :
i=]
Using a computer algebra system, we obtain

2
- 2 . 2n 4
02 : Czlle(q)ll.’ 1 +d = * e(d”)

q




where nq is listed in Table 9.1.

q 0 2 4 6 8 10 12

) 240 360 936 1768 2856 4200 5800

Table 9.1. nq is the asymptotic expansion of the effectivity index.

Not only is & asymptotically exact as predicted in Theorem 5.1, but we

observe that with Q=0 and B = m/2 we have Kyy = 1 in (5.3) and

in (5.4)
2 2
12 =1+ d'x

8{(2q+3)% - 4}

and a comparison with Table 9.1 shows that for q 2 2 this bound for

K

29 is the best possible one.

Further, it is verified directly that 9, = cos [—2'- x] in this case,

hence ¥ 1in (6.16) is equal to zero, and by Theoream 6.1 we have in (5.3) that

2.1
(Ai) s 5 Dq . i=1,2,

i.e. & is spectrally exact for weight functions ¢ satisfying

Q=0(’dP) , 0sp<1.

Finally, in Table 8.2 we present the asymptotic expansion as d-—0 of

CirZ,  Ne@i?,
L™ (w) L=(R)




q d3 Irlz2 //Ie(q)lz2
L™ (w) L=(Q)

0 180 + 15(xd)2/ 7  + owdh
2 630 + 315(xd)2/ 44+ o(dh)
a 2574 + 1287(xd)? / 140 + oO(d})
6

6630 + 9945(xd)% / 836 + o0(ad)

Table 9.2. Asymptotics of the Lz-residual versus
the Lz-error for small q.

In each case the leading term agrees with the numerical value for EZq
obtained from Theorem 7.1 which shows the asymptotic exactness of the
estimator there for our model problenm.

Further, In the unweighted case (i.e. ¢ = 1) we find that f € T, with

B
2
g = Vﬁl , where Al is the first eigenvalue of - 9—5 in (-1,1) with
dx
boundary conditions wu(%1) = 0, so that we have here
'2 2 172
Kil =1<06s [1 + §—d Dq] = x12

with Dq as in (5.5), i.e. for this problem the estimator (4.8) with (4.25)

is asymptotically and spectrally exact.
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